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Looking into Gait for Perceiving Emotions via
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Abstract—Emotions can be perceived from a person’s gait, i.e.,
their walking style. Existing methods on gait emotion recognition
mainly leverage the posture information as input, but ignore
the body movement, which contains complementary information
for recognizing emotions evoked in the gait. In this paper, we
propose a Bilateral Posture and Movement Graph Convolutional
Network (BPM-GCN) that consists of two parallel streams,
namely posture stream and movement stream, to recognize
emotions from two views. The posture stream aims to explicitly
analyse the emotional state of the person. Specifically, we design a
novel regression constraint based on the hand-engineered features
to distill the prior affective knowledge into the network and boost
the representation learning. The movement stream is designed
to describe the intensity of the emotion, which is an implicitly
cue for recognizing emotions. To achieve this goal, we employ
a higher-order velocity-acceleration pair to construct graphs, in
which the informative movement features are utilized. Besides, we
design a PM-Interacted feature fusion mechanism to adaptively
integrate the features from the two streams. Therefore, the
two streams collaboratively contribute to the performance from
two complementary views. Extensive experiments on the largest
benchmark dataset Emotion-Gait show that BPM-GCN performs
favorably against the state-of-the-art approaches (with at least
4.59% performance improvement). The source code is released
on https://github.com/exped1230/BPM-GCN.

Index Terms—Emotion identification, gait, bilateral posture
and movement graph convolutional network, affective constraint.

I. INTRODUCTION

EMOTIONS are biological states associated with feelings,
thoughts, behavioral responses, and a degree of pleasure

or displeasure. They play an essential role in our lives, wit-
nessing our experiences and reflecting our state of mind about
the world and other people [1], [2]. Due to the importance of
perceived emotion in daily life, automatic emotion recognition
has received increasing attention in many fields, such as
human-robot interaction [3], [4], behavior prediction [5], [6],
and affective computing [7], [8].

In academia, current research mainly falls into leveraging
verbal cues such as text [9] and speech [10], as well as non-
verbal cues [11], e.g., affective features [12], facial cues [1],
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Fig. 1: Motivation of the proposed method. Humans can express
their emotions by the posture and movement of multiple parts of
their bodies. Based on the skeleton extracted from the gait video, we
design a bilateral posture and movement graph convolutional network
to identify human emotions.

[13], and body expressions [14]. There are extensive works
using non-verbal cues for understanding the emotions of
individuals [15]–[17], in which facial expressions are most
commonly utilized [13], [18], due to the massive amount of
available data and applications. Nevertheless, in some cases,
we can hardly get clear faces, such as on a dark night without
sufficient lighting and sometimes facial expressions are not
reliable when someone sneers, behaves with mock or makes
a face.

According to psychology literature [19]–[21], participants
can also identify the emotions of the subject by observing
their posture. For example, arm swinging is related to positive
emotion, collapsed upper body is related to negative emo-
tion [22]. Besides, body movement (e.g., walking speed) also
plays an important role in the perception of emotions. [23]
demonstrates that the movement is particularly associated with
the extent of the emotion. Emotions such as anger and excite-
ment have high arousal, which have closer relation with rapid
movements than low arousal emotions, such as sadness and
contentment [14]. Therefore, in this paper, we aim to capture
human emotions from another perspective of non-verbal cues,
i.e., gait, which is defined as a person’s walking style [24]–
[26]. Gait has been proven to be significant to human identity
recognition [27] and emotion classification [28].

There are some methods that identify human emotions
from gait. Early algorithms mainly focus on extracting hand-
crafted features such as joint angles [29], [30], covariance
descriptors [31], kinematic features [32], and feeding them
into classifiers to predict emotions. Recently, researchers began
to extract deep features using Long Short-Term Memory net-
works (LSTMs) [33], [34] and Convolutional Neural Networks
(CNNs) [35], [36]. However, the current methods have the
following limitations: First, most of them [28], [37], [38]
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ignore the hidden movement information (e.g., velocity and
acceleration of joints) that is related to human emotions [14],
[30] and can help to learn discriminative classifiers. Second,
the hand-crafted affective features are directly concatenated
with the deep features [28], [33], [39], which makes the deep
model hard to understand and utilize these affective features.
Additionally, although current action recognition methods can
be adapted to identify emotions, they neglect the affective
cues that are instructive to bridge the gap between posture
and emotion.

To address the above concerns, inspired by the fact that
both posture and movement of body parts can express human
emotions [40], we propose a Bilateral Posture and Move-
ment Graph Convolutional Network (BPM-GCN) to imitate
human emotion perception (see Fig. 1). BPM-GCN maintains
two graph convolutional networks simultaneously, namely
the posture stream and the movement stream. The posture
stream aims to mine emotion information from the state of
a person’s posture, such as joint positions and the angles
between joints. The movement stream utilizes higher-order
representations (i.e., velocity and acceleration), with which
the hidden movement information closely related to human
emotions. The two streams address the important problem
regarding where we can find more emotional cues from gait.
Besides, we also design an affective constraint based on the
hand-engineered features in the posture stream, which can
distill the prior emotional knowledge into the network and well
bridge the gap between posture and emotion. To integrate the
features from the two streams, we design a PM(Posture and
Movement)-Interacted feature fusion mechanism, which can
make one stream obtain externally useful information from
the other view, and thus benefits the performance further. To
verify the superiority of our model, extensive experiments are
performed on the benchmark dataset Emotion-Gait [28], where
BPM-GCN achieves State-Of-The-Art (SOTA) performance.

The contribution of this paper is fourfold:

• We propose a novel Bilateral Posture and Movement
Graph Convolutional Network, called BPM-GCN, for
emotion recognition from gait. BPM-GCN exploits the
affective information of gait from two important views,
i.e., posture and movement, which perceive both state and
extent of human emotions.

• We provide an insight into mining useful information in
the posture stream by introducing an affective constraint.
Such an affective constraint helps to distill the prior
affective knowledge into the network, which can guide
the training of the network and effectively bridge the gap
between posture and human emotions.

• We design a PM-Interacted feature fusion mechanism
consisting of a temporal and a spatial attention operation,
which can reduce the side-effects from the modality
discrepancy and fuse the features from two streams
adaptively.

• On the widely used Emotion-Gait benchmark, the pro-
posed BPM-GCN significantly outperforms the SOTA
methods with at least 4.59% accuracy improvement,
which demonstrates the superiority of our algorithm.

II. RELATED WORK

In this section, we review prior works that are related to
this paper. Specifically, we group them into two categories:
1) Gait Emotion Recognition (§ II-A), and 2) Skeleton-based
Action Recognition (§ II-B).

A. Gait Emotion Recognition

Affective computing, which involves computer science, psy-
chology, and cognitive science, has been studied for over two
decades [12], [41]–[43]. Most of the existing works focus
on predicting human emotions from face images, speech,
and text [44]–[48]. However, some researchers argue that
body posture also plays an important role in human feeling
expression [49]–[51]. For example, experiments in [52] show
that participants can recognize basic emotions with high accu-
racy from point-light arm movements of two actors who are
instructed to perform drinking and knocking movements with
ten different affects. Boone et al. [53] find that people with joy
tend to open forearms while they will tighten their bodies to
be self-protective when they are frightened. Gross et al. [54]
conduct kinematic analysis on motion-captured data collected
from 16 individuals who are asked to walk while experiencing
five emotions (joy, contentment, anger, sadness, and neutral),
and the experiments indicate that the fastest walking velocity is
for joy and anger, and the slowest is for sadness. Besides, when
participants are in sadness, they flex the neck and thoracic, but
they extend the trunk or depress the shoulder when they are
joyful.

Since a person’s walking style can reveal certain emo-
tions [21], [49], [50], algorithms have been developed to auto-
matically identify emotions from gait, which is complementary
to emotion recognition from other modalities. Most previous
approaches are based on hand-crafted features. Karg et al. [30]
extract efficient features with respect to affects from captured
gait data, and then use Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and general discriminant
analysis to either reduce the temporal dimension or select
relevant features for classification. Blind source separation
techniques such as PCA can hardly process complex joint
angle trajectories of body movements effectively. To address
this issue, Omlor and Giese [55] develop a new non-linear
source separation technique. Rather than extracting common
features such as stance phase, frequency, and footstep length
from gait, Venture et al. [29] classify five emotions based
on joint angles. Further, Li et al. [56] perform the discrete
Fourier transform and statistical methods on gait collected
from Microsoft Kinect to identify emotions. Chiu et al. [57]
compare the performance of several supervised models, e.g.,
support vector machines, multilayer perceptron, naive Bayes,
and decision trees, trained with features from video frames.

Recently, due to the powerful representation ability of deep
networks [58], [59], researchers started to develop deep models
and feed 3D joint positions into them to identify emotions.
For example, Randhavane et al. [33] concatenate deep features
in LSTM and hand-crafted features computed from gait, and
then employ a random forest classifier to predict emotions.
Following this work, Bhattacharya et al. [28] present a new
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dataset, called Emotion-Gait, that contains 2,177 human gait
and external synthetic gait with annotations of four emo-
tional categories. They also propose a Spatial Temporal graph
convolution-based network for Emotion Perceiving (STEP).
On the same dataset, Narayanan et al. [37] propose a multi-
view skeleton model to identify emotions for socially aware
robot navigation among pedestrians.

Different from the above-mentioned methods, we propose
to recognize gait emotions not only from 3D joint positions
but also from the hidden movement information which also
carries important emotional cues. To this end, we devise a
bilateral posture and movement graph convolutional network
to predict emotions, taking both important perspectives into
consideration. The two streams can collaboratively contribute
to the emotion recognition from gait.

B. Skeleton-based Action Recognition
We aim to identify emotions from gait represented by 3D

joint coordinates, which is related to the skeleton-based action
recognition task [60] to some extent. Here we briefly review
some works that have made great contributions to this field in
recent years.

Recurrent Neural Networks (RNNs) are widely used in
skeleton-based action recognition. For example, Du et al.
[61] propose a Hierarchical Recurrent Neural Network (H-
RNN), which divides joints into multiple parts, feeds them to
corresponding subnets, and further fuses the features extracted
from subnets in a hierarchical way. In [62], Wang et al.
introduce a two-stream RNN to learn both spatial and temporal
representations, using rotation and scaling transformations to
augment data. In addition to RNNs, as in other computer
vision tasks [63], CNNs have also shown great potential for
action recognition. Du et al. [64] propose to concatenate joint
coordinates in a chronological order to convert a skeleton
sequence into a matrix, and then feed it into a CNN to extract
representations. Kim et al. [65] utilize Temporal Convolutional
Neural networks (TCNs) for skeleton-based action recognition.
They propose a novel model, called Res-TCN, that can explic-
itly learn spatial-temporal representations.

Recently, skeleton-based action recognition algorithms have
been dominated by Graph Convolutional Networks (GCNs).
This is intuitive because a human skeleton can be regarded
as a graph with joints as nodes. Following this insight, Yan
et al. [38] propose a Spatial-Temporal Graph Convolutional
Network (ST-GCN), which automatically extracts spatial and
temporal features from the coordinates of joints. Song et al.
[66] present a multi-stream GCN where each single stream
is forced to explore discriminative features from inactivated
joints, which effectively alleviates performance deterioration
caused by noisy skeletons. Considering that previous models
can only capture local dependencies among joints, Li et
al. [67] propose an Actional-Structural Graph Convolutional
Network (AS-GCN) to learn latent dependencies that are
specific to actions. Additionally, to incorporate both the joint
and bone information and utilize the relationship between
them, Shi et al. [68] design a directed graph neural network
to predict actions using the information of joints, bones, and
their relations.

Note that as the above methods, our BPM-GCN is also
based on 3D joint coordinates. However, directly applying
these skeleton-based action recognition methods to emotion
identification cannot obtain favorable results (see Tab. II)
because they neglect the affective cues that are important
for perceiving emotions. It is crucial to design a specific
architecture for this abstract and challenging task.

III. METHODOLOGY

In this section, we first make a definition and present a
brief overview of the proposed method in § III-A. Then, we
elaborate the proposed bilateral posture and movement GCN
(BPM-GCN) in § III-B, including the details of the movement
stream and posture stream. Besides, we introduce the PM-
Interacted feature fusion mechanism, which can effectively
fuse the features from both streams, in § III-C.

A. Definition and Overview

A skeleton-based gait is represented by a sequence of 3D
joint coordinates. It can be denoted as C × T × N , where
C is the attribute dimension of a joint (e.g., if we represent
each joint with 3D coordinates, it is 3). T is the length of
the temporal sequence, and N denotes the number of joints
in a single frame. In this work, we use a spatial-temporal
graph [38] to represent the relations of multiple joints and
frames. Let graph G = (V, E) represent a gait, where V and
E denote the vertices and the edges, respectively. In detail, the
vertices V = {vti ; i = 1, 2, ..., N, t = 1, 2, ..., T}, where vti
denotes the ith joint of the tth frame. In our work, N = 16
is the number of joints in a frame and T = 48 is the number
of frames in a gait. Two kinds of edges are considered in the
spatial-temporal graph. On the one hand, as shown in Fig. 3(a),
within the same frame, each joint is connected with neigh-
boring joints following the connectivity of the human body
structure. On the other hand, each joint in one frame is also
connected with the same joint in the adjacent frames (see Fig.
3(b)). In other words, the edge set E contains two subsets. The
first set of spatial edges is defined by Es = {vtivtj ; (i, j) ∈ H},
where H is the connected joint pair set for the human skeleton
map. This set represents the intra-frame position connections
of the joints. The second set of temporal edges is denoted as
ET = {vtiv

t+1
i ; i = 1, 2, ..., N, t = 1, 2, ..., T − 1}, which

represents the inter-frame temporal connections of joints.
As shown in Fig. 2, the proposed Bilateral Posture and

Movement Graph Convolutional Network (BPM-GCN) con-
sists of two streams. One is the posture stream that aims
to extract emotional information from the person’s posture
(i.e., joint position, the angles between joints, the distance
between joints, and body area), and the other is the movement
stream that leverages the velocity and acceleration to model
the person’s emotions. Both streams imitate human perception
from two important views and collaboratively contribute to the
performance improvement. Next, we will briefly introduce the
basic element (i.e., spatial-temporal graph convolution) used in
our model, and then introduce the proposed framework (BPM-
GCN) in detail.
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p ). Meanwhile,
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m ). Note that (x, y, z) is the 3D coordinates of a joint, and (vel, acc) represents the velocity and acceleration.
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center, and the orange node denotes the subset close to the gravity
center. (b) Illustration of the spatial-temporal sequence for a gait.

B. Bilateral Posture and Movement GCN

• Posture Stream and Affective Constraint. The posture
stream takes the joint coordinates based graph as input and out-
puts the emotion prediction. We divide the posture stream into
two branches, i.e., classification branch and regression branch,
where they share weights except for the last fully-connected
layers. The first branch outputs the classification prediction
for the emotions and the second branch distills the knowledge
from the posture-based hand-crafted affective features via a
regression constraint. Such an affective constraint can bridge
the gap between the posture and emotion, and thus benefits
the stream to learn more discriminative representations.

Fig. 4: Illustration of the spatial-temporal convolutional block used
in our model. ‘ConvS’ and ‘ConvT’ represent the spatial convolution
and temporal convolution respectively.

Spatial relations of joints is crucial for analyse emotions
based on gait patterns [30]. Therefore, we utilize three fea-
tures including angles, distances, and areas as posture-based
hand-crafted affective constraint. First, an angle feature is
calculated based on three joints. For example, we calculate
the angle between the left and right shoulders (see nodes 4
and 7 in Fig. 3(a)) through the person’s neck (see node 2 in
the same figure). Then, each distance feature involves two
joints and is calculated as the spatial (Euclidean) distance of
the joint locations. For the area features, each one involves
three joints, and we compute the area of the triangle formed
by those joints. To sum up, we can extract 31 posture-based
features (i.e., 14 angle, 9 distance, and 8 area features; details
can be found in Tab. I).

Let (G1,y1,y2) be the triplet of a training sample for the
posture stream, where G1 = (V1, E) denotes the input gait.
y1 = (y11 , y

2
1 , ..., y

Cn
1 ) is a one-hot vector that represents the

emotion label for this sample, in which yj1 = 1 indicates
the label is j, and Cn denotes the total number of classes.
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TABLE I: Details of affective features used in our method. Each cell in the table represents a joint combination for calculating a feature.
For posture-based affective features, each angle is computed among three joints with the second as the vertex, a distance is calculated
between two joints, and an area represents the area of the triangle formed by three joints. For movement features, we compute velocity and
acceleration for each joint. The position of each node can be referred to in Fig. 3(a). Besides, the up point in the table refers to any point
vertically above the root node. In total, we can extract 31 posture-based features (i.e., 14 angle, 9 distance, and 8 area features) for each
frame and 8 movement features for each joint.

Features Joint Combination Joint Combination

Posture
Features

Angle

left shoulder, neck, right shoulder neck, right shoulder, left shoulder
right shoulder, left shoulder, neck neck, right shoulder, right elbow
neck, left shoulder, left elbow right shoulder, right elbow, right hand
left shoulder, left elbow, left hand neck, spine, root
head, neck, spine root, right hip, right knee
root, left hip, left knee right hip, right knee, right foot
left hip, left knee, left foot head, root, up point

Distance

right hand, root left hand, root
right hand, right shoulder left hand, left shoulder
right elbow, root left elbow, root
right foot, root left foot, root
right foot, left foot

Area

left hand, neck, right hand left shoulder, neck, right shoulder
left hand, root, right hand left elbow, neck, right elbow
left foot, neck, right foot left hip, neck, right hip
left foot, root, right foot left knee, neck, right knee

Movement
Features

Velocity the four-dimensional vector (vx, vy , vz , |v|) for each joint, where the first three are the
velocity components in x, y, and z directions, and the last is its overall magnitude.

Acceleration the four-dimensional vector (ax, ay , az , |a|) for each joint, where the first three are the
acceleration components in x, y, and z directions, and the last is its overall magnitude.

y2 = (y12 , y
2
2 , ..., y

Cf

2 ) represents the posture-based affective
features, where Cf = 31 denotes the dimension of the affective
features. Each node vt1i ∈ V1 of the gait can be represented
by its 3D joint coordinates (cx, cy, cz) that denote the spatial
position of the joint. Let {a11, a21, ..., a

Cn
1 } be the output values

of the last fully-connected layer of the first (classification)
branch, which are normalized by a softmax function:

pj1 =
ea

j
1∑Cn

k=1 e
ak
1

, j ∈ {1, 2, ..., Cn}. (1)

Then the cross-entropy loss for the label prediction of the
posture stream can be defined as:

Lcls
p = −

Cn∑
j=1

yj1 ln p
j
1. (2)

Let {b11, b21, ..., b
Cf

1 } be the output values of the last fully-
connected layer of the second (regression) branch. Then the
regression loss (mean squared error) of the second branch
regarding the prediction of posture-based affective features can
be depicted as:

Lreg
p =

1

Cf

Cf∑
k=1

(bk1 − yk2 )
2. (3)

Lreg
p serves as the affective constraint. Furthermore, the total

loss for the posture stream is formulated as:

Lp = Lcls
p + Lreg

p . (4)

• Movement Stream. The movement stream predicts
the human emotions from the movement attributes of human

joints. It is based on the fact that the movement attributes
have closely relation with the intensity of emotion [69], which
is a implicit cue for predicting human emotions. Note the
movement stream contains only one classification branch and
has no regression branch with it. This is because the posture-
based affective features have been well-defined in the literature
and can be easily computed based on joint positions, while it is
a challenging task to build a similar constraint with velocity
and acceleration as input. We are considering investigating
such a constraint in the future.

For every joint, we calculate velocity in each direction by
performing a simple subtraction between the coordinates of the
current frame and the previous one. Hence the velocity of each
joint is represented by a 4-dimensional vector (vx, vy, vz, |v|)
where the first three are the velocity components in x, y,
and z directions, and the last is its overall magnitude. And
we compute acceleration in the same way by performing a
subtraction between the velocities of two neighboring frames
(i.e., as the second-order difference). Note that we do not use
the higher-order information (e.g., jerk) here, since it is far
from the human perception.

Let (G2,y1) be the training pair of a sample for the move-
ment stream, where G2 = (V2, E) denotes the movement-
feature-based gait. Each node vt2i ∈ V2 of the gait
can be represented by an 8-dimensional movement feature
(m1,m2, ...,m8), where the first four dimensions are the
velocity attributes and the last four dimensions are the acceler-
ation attributes. Let {a12, a22, ..., a

Cn
2 } denote the output values

of the last fully-connected layer of the movement branch,



6 IEEE TRANSACTIONS ON AFFCTIVE COMPUTING

++

Natt

Tatt

Natt

++

Tatt

p

ix

m

ix

p

ix

m

ix

++

Natt

Tatt

Multiplication

Summation

Spatial attention

Temporal attention

Fig. 5: Illustration of the PM-Interacted feature fusion mechanism.
Each feature xp

i (xm
i ) from the ith stage of the posture (movement)

stream is adaptatively fused with the feature xm
i (xp

i ) from the ith

stage of the movement (posture) stream. Blue and green colors repre-
sent the posture feature flow and movement feature flow, respectively.

which are then normalized by the softmax function:

pj2 =
ea

j
2∑Cn

k=1 e
ak
2

, j ∈ {1, 2, ..., Cn}. (5)

Again, Cn is the total number of classes. The cross-entropy
loss function of the movement stream is defined as:

Lcls
m = −

Cn∑
j=1

yj1 ln p
j
2. (6)

Overall, the proposed BPM-GCN consists of the posture
stream and the movement stream. The two streams can be
optimized separately or together. When we train two streams
together, the total loss is defined as:

L = Lp + Lcls
m . (7)

Empirical study shows that our model is robust to different
weighting of loss, thus we directly add the two terms to form
the L.

C. BPM-GCN with PM-Interacted Feature Fusion

Although the naive implementation of BPM-GCN can
achieve good results, the way of combining the two stream
is relatively straightforward without considering any fusion
at the feature level. To further improve the effectiveness
and performance of the proposed two-stream architecture, we
further propose a PM-Interacted feature fusion mechanism to
make the two streams exchange complementary information.
As shown in Fig. 5, the proposed PM-Interacted feature fusion
mechanism consists of two main operations, i.e., a temporal
attention to make the model focus on the important frames and
a spatial attention to make the model attend to the important
nodes. Each selected middle-layer posture feature (movement
feature) is updated by adding itself with the attended move-
ment feature (posture feature), i.e., making the model fuse the
two view features adaptively. As shown in Fig. 2, the backbone
of the BPM-GCNcontains three convolution stages, each stage
is with the same feature dimension. The output features of

these stages in the two streams are fused using the proposed
PM-Interacted feature fusion mechanism. We introduce the
PM-Interacted feature fusion mechanism as follows.

The input gait is represented by C × T × N , where the
first dimension C is the attribute axis, the second dimension
T is the temporal axis, and the third dimension N denotes
the node (joint) axis. Let xp

i (i ∈ {1, 2, 3}) denote the output
feature map of the ith stage in the posture stream and xm

i

(i ∈ {1, 2, 3}) represents the output feature map of the ith

stage in the movement stream. The output feature map of the
ith stage in the posture stream is updated by being fused with
the feature map of the ith stage in the movement stream, which
is formulated as:

xp
i = xp

i + xm
i ∗ Tatt(x

m
i ) ∗Natt(x

m
i ), (8)

where Tatt is the temporal attention along the temporal axis,
and Natt denotes the spatial attention along the node axis.
Similarly, the output feature map of the ith stage in the
movement stream is updated by being fused with the feature
map of the ith stage in the movement stream, which is defined
by:

xm
i = xm

i + xp
i ∗ Tatt(x

p
i ) ∗Natt(x

p
i ). (9)

• Temporal Attention. The temporal attention Tatt aims
to emphasize the emotion-relevant information along the tem-
poral axis, which is defined as:

Tatt(·) = Sigmoid(MLP (PT
avg(·))), (10)

where PT
avg is the global average pooling along the tem-

poral axis, MLP (·) represents a two-layer perception, and
Sigmoid(·) is the sigmoid function that normalizes the value
of the features to [0, 1].

• Spatial Attention. The spatial attention focuses on the
important nodes that contribute to the PM-Interacted feature
fusion. The operation is denoted by:

Natt(·) = Sigmoid(MLP (PN
avg(·))), (11)

where PN
avg is the global average pooling along the node

axis. Other symbols are the same as the temporal attention
operation.

Such an attention-based PM-Interacted feature fusion mech-
anism has two aspects of advantages: 1) it enables the model to
focus on the important frames in the sequence and important
nodes in the human skeleton for perceiving emotions; 2) it can
adaptatively reduce the modality difference of the two-stream
features and make the fusion more effectively, which benefits
the learning of both two streams.

IV. EXPERIMENTS

In this section, we first introduce the implementation de-
tails in § IV-A. Then, we introduce a standard gait emotion
perception benchmark and provide quantitative evaluation and
qualitative analysis of the proposed BPM-GCN on this bench-
mark in § IV-B. Furthermore, in § IV-C, we conduct ablation
studies to further investigate the effectiveness of our BPM-
GCN model. Finally, we make a discussion about the overall
performance improvement of the proposed model in § IV-D.
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TABLE II: Performance comparisons of different models (ten emotion-specific methods and two action recognition methods (denoted by ∗))
on the Emotion-Gait dataset. Ours (Ours⋇) represents that we train the model without (with) the PM-Interacted feature fusion mechanism.

Methods
Venture et al. Karg et al. Daoudi et al. Wang et al. Crenn et al. LSTM ProxEmo STEP TNTC ST-GCN∗ 2s-AGCN∗ BPM-GCN BPM-GCN⋇

[29] [30] [31] [32] [70] [33] [37] [28] [71] [38] [72] Ours Ours⋇

Accuracy (%) 30.83 39.58 42.52 53.73 66.22 75.10 82.40 83.15 85.97 65.62 84.40 88.99 90.37

TABLE III: To evaluate the robustness of our method, we
compare performance of BPM-GCN with SOTA models in
various dataset split settings. Except for the 5-fold cross
validation, both the two settings are conducted 5 times with
different sample separation.

Settings ProxEmo STEP 2s-AGCN BPM-GCN BPM-GCN⋇

8 -1-1 78.53±0.79 80.21±0.82 81.25±0.76 87.36±0.91 88.41±0.82
5-fold 80.01±0.59 80.38±0.65 82.57±0.60 87.39±0.54 88.94±0.50

9-1 82.53±0.63 83.53±0.78 84.53±0.81 88.84±0.63 89.93±0.57

A. Experiment Setup

• Dataset. In this paper, we conduct the experiments on the
Emotion-Gait [28] and ELMB [39] datasets. The Emotion-
Gait dataset contains 2, 177 real gaits and 1, 000 synthetic gaits
with four emotion classes (i.e., happiness, sadness, anger, and
neutral). The real gaits contain 1, 835 samples collected from
the Edinburgh Locomotion MOCAP Database [73] and 342
gaits collected by the authors. Each gait of 1, 835 samples has
240 frames, while the 342 samples have flexible numbers of
frames (27-75). The 3D skeletal data of the gaits from videos
are extracted by a representative pose estimation method [74].
All real gaits are labeled by domain experts. The synthetic
gaits are generated from a trained auto-encoder that has been
fed with emotion labels. Following [28], we only use the
2, 177 real gaits. Besides, we also compare the BPM-GCN
with SOTA methods on the ELMB [39] dataset, which is
annotated by multiple emotion categories for gaits. In total,
the dataset contains 3,924 gaits of which 1,835 have emotion
labels provided by 10 annotators. In detail, the proportion
of happy, sad, angry, neutral are 58%, 32%, 23%, and 14%
respectively. In this paper, we sample every fifth frame for
each gait of the subset with 1, 835 samples and obtain the first
48 frames for the second subset with 342 samples. For those
samples in the second subset whose total frame numbers are
less than 48, we expand them to 48 frames by padding zeros.
Finally, we obtain 2, 177 real gaits with 48 frames for our
experiments. As suggested in [28], the dataset is split into 9-1
for training and testing.

• Architecture of Two Streams. The convolution network
for spatial-temporal graph is following [38]. The architectures
of the posture stream and movement stream are similar except
for the input and the output layers. Both of them contain a
stack of the STConv blocks (10 blocks), a global max-pooling
layer, and the final fully-connected layers. For the posture
stream, the input-output channels for each block are {(3, 64),
(64, 64), (64, 64), (64, 64), (64, 128), (128, 128), (128, 128),
(128, 256), (256, 256), (256, 256)}. The last fully-connected
layer contains two branches, one for emotion prediction and
the other for affective feature regression. For the movement

TABLE IV: Performance comparison of state-of-the-art mod-
els on multi-class ELMD dataset.

Methods Sub-class Accuracy (%) MAP Accuracy (%)

Happiness Sadness Anger Neutral

ProxEmo 89.29 79.63 76.47 78.57 80.99 80.97
STEP 87.07 85.96 74.29 80.49 81.95 82.95
2s-AGCN 94.70 79.11 76.71 87.18 84.43 84.39
BPM-GCN 93.62 79.03 83.58 85.56 85.45 85.91
BPM-GCN⋇ 93.71 79.03 83.82 85.56 85.53 86.33

stream, the input-output channels for each block are {(8, 64),
(64, 64), (64, 64), (64, 64), (64, 128), (128, 128), (128, 128),
(128, 256), (256, 256), (256, 256)}. The last fully-connected
layer is for emotion prediction.

• Implementation Details. We conduct our experiments
using the PyTorch [75] framework on a single GTX 1080Ti
GPU. We use the mini-batch Stochastic Gradient Descent
(SGD) to optimize the proposed model. We set Nesterov
momentum to 0.9 to accelerate the training process. The
learning rate is set to 0.01 initially and is divided by 10 every
30 epochs. The weight decay is set to 0.001. It takes about an
hour with a batch size of 32 to train the model for 80 epochs.
Additionally, to make data augmentation for the training gaits,
we add some noise to the coordinates by randomly choosing
small rotations and translations as proposed by [72]. For
training, we optimize the posture stream and movement stream
separately or together (i.e., the loss is Lp + Lcls

m ) as two
variants. For testing, we make the final prediction by averaging
the scores of the two streams.

• Contenders. We compare the proposed BPM-GCN with
two kinds of methods. On the one hand, the methods designed
for gait emotion recognition makes much progress in the
past years [28], [39]. Specifically, we compare BPM-GCN
with 5 traditional algorithms [29]–[32], [70], and 4 Deep
Neutral Network (DNN) based methods [28], [33], [37], [71].
On the other hand, we provide the result of the mainstream
action recognition methods [38], [72], which have powerful
performance on the Emotion-Gait dataset as well.

B. Comparison with SOTAs

• Comparison with Emotion-specific Methods. As shown
in Tab. II, the proposed BPM-GCN outperforms all methods
by a large margin. Moreover, based on the robustness analysis
in Tab. III, the BPM-GCN is robust on the various settings
and stably achieves the best performance on the Emotion-
Gait dataset. We observe that the traditional methods, i.e.,
those based on hand-engineered features, achieve less than
70% accuracy due to the limited representation ability. For
the deep methods, our BPM-GCN significantly outperforms
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TABLE V: Performance comparison between our proposed BPM-
GCN and BPM-GCN⋇ with the PM-interacted feature fusion. ⋇
represents that the proposed BPM-GCN employs the PM-interacted
feature fusion mechanism. Besides, the Posture⋇ and Movement⋇
represent training with BPM-GCN⋇ and testing with single stream
(i.e. posture or movement) respectively.

Settings Happiness Sadness Anger Neutral Accuracy (%)

Posture 92.06 75.61 90.09 61.11 86.24
Movement 96.03 73.17 81.82 72.22 87.61
BPM-GCN 95.24 78.05 87.89 72.22 88.99

Posture⋇ 96.83 80.49 81.82 72.22 89.45
Movement⋇ 96.83 80.49 75.76 77.78 88.99
BPM-GCN⋇ 96.83 82.93 81.82 77.78 90.37

the best emotion-specific method STEP (i.e., 88.99% versus
83.15%), and achieves at least 5.31% (i.e.,88.84% versus
83.53% ) improvement on mean accuracy for various split.
Based on the experimental results shown in the the Tab. IV,
BPM-GCN outperforms ProxEmo and STEP by 4.94% and
2.97% on the accuracy of ELMD respectively. BPM-GCN
improves the precision of Happy, Anger, and Neutral on the
multiple label recognition dataset, which leads to the SOTA
performance on the MAP. STEP employs ST-GCN on walking
videos and its advantage lies in the use of STEP-Gen for
generating annotated synthetic gait to make data augmenta-
tion. However, it does not effectively mine the information
hidden in joints, i.e., the posture and movement cues. For the
proposed BPM-GCN, the posture stream learns the posture
features directly from gait, and the movement stream implicitly
models emotional cues by mining the velocity and acceleration
information. Both streams not only imitate human perception
from two important views but also collaboratively contribute
to the emotion recognition.

• Comparison with SOTA Action Recognition Methods.
ST-GCN is the first work designing a spatial-temporal graph
convolutional network to learn both the spatial and temporal
patterns. Similarly, 2s-AGCN models position and direction
information simultaneously. However, both ST-GCN and 2s-
AGCN focus on the information useful for action recognition,
which contains insufficient affective cues for emotion perceiv-
ing. In contrast, the proposed model fully exploits the relation
between gait and human emotions from both posture and
movement perspectives, and at the same time leverages prior
affective knowledge to guide the training of the model. Thus,
the accuracy of 88.99% and 86.33% has been achieved on the
Emotion-Gait and ELMD datasets, which exceeds the current
best method 2s-AGCN by 4.59% and 1.94% respectively.
Moreover, with the help of the PM-interacted feature fusion
strategy, our method steadily performs better on both Emotion-
Gait and ELMD datasets. For various split experiment, BPM-
GCN outperforms 2s-AGCN by 4.31% for mean accuracy, and
has smaller standard deviation on most settings.

• Improving the Performance with the PM-interacted
Feature Fusion Mechanism. We conduct experiments to
demonstrate the effectiveness of the proposed PM-interacted
feature fusion mechanism in Tab. V. As shown in the table,

TABLE VI: Ablation study of the posture and movement streams.
Note ‘✓’ indicates the corresponding stream is utilized in the training
process. ‘✓’ represents the posture stream without the affective
constraint. Top (bottom) groups: the two streams are optimized
separately (together).

Stream Sub-class Accuracy (%) Accuracy (%)
Posture Movement Happiness Sadness Anger Neutral

✓ - 97.62 75.61 54.55 61.11 83.94
- ✓ 96.83 73.17 75.76 66.67 86.70
✓ ✓ 96.83 80.49 63.64 61.11 85.78
✓ ✓ 97.62 80.49 72.73 66.67 88.07

✓ - 94.44 68.29 45.45 66.67 79.82
- ✓ 92.06 75.61 90.09 61.11 86.24
✓ ✓ 96.03 73.17 81.82 72.22 87.61
✓ ✓ 95.24 78.05 87.89 72.22 88.99

TABLE VII: Performance comparison of SOTA models on
Emotion-Gait dataset, the sub-class accuracy for each emotion
is also presented. The results before / are acquired from the
initial Emotion-Gait dataset, and the ones after / are obtained
with the same number of samples among classes.

Methods Sub-class Accuracy (%) Accuracy (%)

Happiness Sadness Anger Neutral

ProxEmo 95.24 / 70.00 79.68 / 75.00 60.40 / 45.00 44.44 / 70.00 82.40 / 65.00
STEP 96.03 / 70.00 79.09 / 65.00 63.64 / 55.00 44.44 / 60.00 83.15 / 63.75

2s-AGCN 96.03 / 70.00 82.93 / 75.00 63.64 / 55.00 44.44/ 70.00 84.40 / 67.50
BPM-GCN 95.24 / 75.00 78.05 / 75.00 87.89 / 55.00 72.22 / 70.00 88.99 / 68.75

BPM-GCN⋇ 96.83 / 75.00 82.93 / 80.00 81.82 / 55.00 77.78 / 70.00 90.37 / 70.00

the model trained with the PM-interacted feature fusion mech-
anism (i.e., BPM-GCN⋇, 90.37%) performs better than the
model without this mechanism (i.e., BPM-GCN, 88.99%) by
1.38%. In addition, based on the result shown in the Tab. III,
BPM-GCN⋇ has smaller standard deviation for all the three
settings. The improvement and robustness are attributed to
the feature sharing between the two streams. The temporal
attention and spatial attention used in the mechanism can
make the model focus on the important temporal sequences
and spatial nodes in the gait, reduce the modality discrepancy
of the two-stream features, and fuse them adaptatively. Thus,
each stream (one view) can get valuable features from the other
stream (the other view), and then the performance of each
stream can be improved. This is verified by the single-stream
accuracies in Tab. V. As shown in the table, the accuracies of
the posture stream and movement stream of the BPM-GCN⋇

are higher than that of the BPM-GCN, which demonstrates
the effectiveness of the proposed PM-Interacted feature fusion
mechanism.

TABLE VIII: Comparison of SOTA models in Emotion-Gait
dataset adding the simulated samples.

Methods Sub-class Accuracy (%) Accuracy (%)
Happiness Sadness Anger Neutral

ProxEmo 92.85 87.80 48.48 55.56 80.61
STEP 94.94 85.20 64.55 47.78 83.71

2s-AGCN 94.36 84.08 67.79 54.19 84.27
BPM-GCN 95.24 85.36 81.38 61.67 86.73

BPM-GCN⋇ 96.03 85.36 81.82 66.77 88.34

• Difficulty of recognizing different emotions. We con-
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TABLE IX: Complexity comparison of different models.
Specifically, we calculate the FLOPs and parameters to de-
scribe the computational complexity and storage cost of the
different methods. Besides, we provide the training time and
the inference time when the mini-batch is unified to 32.

ProxEmo STEP 2s-AGCN BPM-GCN BPM-GCN⋇

FLOPs (G) 1.58 0.31 0.95 1.91 1.91
Params (M) 0.08 0.71 3.44 7.26 7.27

Training Time (S) 22.88 3.76 11.01 14.44 15.11
Inference Time (S) 7.56 0.06 2.31 3.60 3.76

Accuracy (%) 82.40 83.15 84.40 88.99 90.37

TABLE X: Performance comparison between the averaging strategy
and the feature concatenation strategy for the two streams. ‘Final’
represents the results when combining the two streams.

Settings Posture (%) Movement (%) Final (%)

Feature concatenation 77.98 84.40 87.15
Averaging 79.82 86.24 88.99

duct experiments to probe the difficulty for recognizing the
different emotions, which is shown in the Tab. VII First, we
present the detailed sub-calss accuracy on the Emotion-Gait
dataset. It can be observed that the sub-class accuracy of
Happiness for all methods are over 95%, and the sub-class
accuracy of Neutral for the methods are lower than 45% except
for BPM-GCN. Actually, the phenomenon may be caused by
two reasons, i.e. the imbalanced number of samples for the
classes and the inherent difficulty of recognizing the emotions.
To eliminate the effect of the imbalanced issue, we further
conduct an experiment with the same number of samples
among classes. In detail, the minimum category Neutral only
has 198 samples, we split the training set, testing set by 9-
1, and result in 178 samples per emotion in the training set
and 20 samples per emotion in the testing set. Based on the
results, Happiness and Neutral are no longer the emotions with
the highest and lowest accuracy. It can be observed that the
Sadness is easiest to be recognized, and the sub-class accuracy
of Anger is lowest.

• Effect of synthetic samples. To probe the influence of us-
ing the 1000 synthetic samples from the Emotion-Gait dataset,
we conduct the experiment by incorporating the samples into
the training set. According to the result shown in the Tab. VIII,
we have the following two observations. First, compared with
the result without adding synthetic samples in Tab. VII, with
the help of a higher proportion of samples, the sub-class
accuracy of Sadness is improved for all 5 methods due to
its relatively low difficulty. Moreover, recognizing the Anger
and Neutral are relatively more challenging, thus the sub-class
accuracy of these two emotions does not achieve consistent
improvement for all the methods. Second, after leveraging
synthetic samples, the sub-class accuracy of Happiness is
decreased on four methods except the BPM-GCN, and the
overall accuracy on the testing set is decreased for the 5
methods. Due to the proportion of samples with Happiness
being diluted in the training set, the model pays less attention
to Happiness and results in the sub-class accuracy decrease.

TABLE XI: Ablation study of multiple posture features (i.e.,
angles, distances, and areas between different nodes) for the
posture stream. ‘✓’ denotes the features used in the experi-
ment.

Posture Features Sub-class Accuracy (%) Accuracy (%)
Angle Distance Area Happiness Sadness Anger Neutral

- - - 94.44 68.29 39.39 55.56 77.98
✓ - - 94.44 78.05 33.33 55.56 78.90
- ✓ - 94.44 73.17 48.48 44.44 79.36
- - ✓ 94.44 75.61 45.45 50.00 79.82
✓ ✓ - 95.24 70.73 48.49 61.11 80.73
- ✓ ✓ 95.24 78.05 45.45 55.56 81.19
✓ - ✓ 95.24 73.17 51.52 50.00 80.73
✓ ✓ ✓ 97.62 75.61 54.55 61.11 83.94

- - - 96.03 82.93 66.67 63.67 87.61
✓ - - 96.03 73.17 81.82 72.22 87.61
- ✓ - 97.62 80.49 81.82 55.56 88.53
- - ✓ 97.62 80.49 75.76 61.11 88.07
✓ ✓ - 95.24 80.49 81.82 61.11 88.07
- ✓ ✓ 97.62 85.37 72.73 66.67 88.99
✓ - ✓ 97.62 78.05 75.76 66.67 88.53
✓ ✓ ✓ 95.24 78.05 87.89 72.22 88.99

• Complexity of SOTA methods. We present the com-
plexity of five SOTA methods in two aspects. On the one
hand, the FLOPs and parameters are calculated to reveal
the computational complexity and the storage cost. On the
other hand, we record the training time and inference time of
each method for one epoch. The mini-batch is unified to 32.
According to the result shown in Tab. IX, we observe that
STEP has the lowest cost on both storage and computational
time. More importantly, with 7.22% profit on accuracy, BPM-
GCN⋇ increases only a 7.27M numbers of parameters. The
acceptable cost and significant performance demonstrate the
practicality of our method.

C. Ablation Studies

In this section, we conduct extensive ablation experiments
on the Emotion-Gait dataset to further investigate the effec-
tiveness of the proposed method. Specifically, it includes six
aspects to highlight the benefit of each module: (1) ablation
analysis of the two streams; (2) effect of posture features
in the posture stream; (3) effect of movement features in
the movement stream; (4) contributions of multiple human
body parts for the movement stream; and (5) comparison of
multiple variants of the proposed PM-Interacted feature fusion
mechanism.

• Ablation Analysis of the Two Streams. We show
the effects of the posture and movement streams in Tab. VI.
First, the experiment results show that the movement stream
achieves the accuracy of 86.70% (86.24%), which is better
than the posture stream (83.94% (79.82%)). It indicates the
movement information is even more effective for predicting
human emotions. Actually, this is caused by the characteristic
of the emotions. The emotions may have different arousal,
thus the extent is an important cue for identification. Second,
when considering both the posture stream and movement
stream, we can improve the performance further to 88.07%
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TABLE XII: Performance comparison among the proposed
affective constraint, the simple concatenation strategy, and
affective mapping [39] for the posture stream.

Settings HappinessSadnessAngerNeutral Accuracy (%)

Simple concatenation 90.48 70.73 54.55 55.56 78.44
Affective mapping [39] 95.24 75.61 48.49 61.11 81.65

Affective constraint 97.62 75.61 54.55 61.11 83.94

Simple concatenation 96.83 82.93 63.64 66.67 86.70
Affective mapping [39] 96.03 73.17 81.82 72.22 87.61

Affective constraint 95.24 78.05 87.89 72.22 88.99

(88.99%), which demonstrates that it is necessary to leverage
both kinds of information to identify gait emotions. Further-
more, training the two streams together (88.99%) performs
better than training them separately (88.07%) in terms of
the overall performance. It demonstrates that combining the
extent of emotion is more effective compared with only using
explicit information. Note that, in the top group, the third row
performs worse than the second row, this may be because the
movement stream gets limited information from the posture
stream (without the affective constraint) in a separate training
manner. Besides, according to the sub-class accuracies, we can
find that ‘Happiness’ is the easiest emotion to identify while
‘Neutral’ is the hardest one for our method (see the last row in
Tab. VI). It may lie in two reasons. One is the unbalanced class
distribution of the dataset, e.g., ‘Happiness’ contains 1,160
samples while ‘Neutral’ includes only 198 samples. The other
reason is that positive and negative emotions can be more
easily revealed from posture and movement, while the neutral
gait seems more difficult to perceive.

Note that the final output of the proposed model is the
average score of the two streams. To demonstrate its effective-
ness, we compare it with an alternative feature concatenation
strategy. In detail, we add another branch by concatenating
the last-layer features from the two branches and then use a
fully-connected layer to predict the final result. As shown in
Tab. X, the feature concatenation strategy (87.15%) performs
worse than the averaging strategy (88.99%). This is because
the posture and movement streams are two different views for
perceiving emotions, the simple averaging strategy can make
each stream pay full attention to a specific view and not be
distracted by the other, thus achieving better results.

• Effect of Affective Features for the Posture Stream. To
explore the effectiveness of different kinds of affective features
(i.e., angles, distances, and areas) for the posture stream, we
perform an ablation experiment and show the results in Tab.
XI. From the table, we can draw the following conclusions.
First, comparing the first four rows in the table, each of
the three kinds of affective features can improve the average
performance of the basic model. Second, combining these
affective features together can further boost the performance.
Third, When we take all the three kinds of affective features
into consideration and employ them in an affective constraint
form, the accuracy reaches 83.94%, improving the perfor-
mance by 5.96% compared to training only with classification
branch (i.e., the first row in the table). Such a significant

Fig. 6: Effect of body parts in the movement stream. The
horizontal axis represents that we train and test the movement
stream without using the information of the corresponding
node.

gain demonstrates the effectiveness of the knowledge guidance
from affective features in the posture stream. Fourth, with
the help of movement stream, the accuracy is significantly
improved. In addition, the affective constraint without angle
achieves the same classification accuracy with just one feature,
which demonstrate the effectiveness of the distance and area.
However, with the help of the angle, the model pays more
attention to the challenging emotions.

We also compare the proposed affective constraint with the
commonly used concatenation strategy (i.e., deep features and
hand-crafted features in posture stream are concatenated) and
the affective mapping [39] in Tab. XII. we implemented the
affective mapping in our method based on [39]. Specifically,
we set the channel dimension of the last block in the posture
steam to 50×48. After a global max pooling layer, the output
embedding feature F of the posture stream has the size of
50× 48. Then we constrain the first 31 × 48 dimension of
the feature (same as the dimension of the affective features)
to the same values of the affective features using a Mean
Square Error (MSE) loss. The whole feature F is also fed into
another fully-connected layer followed by a softmax function
to output the emotions. The posture stream is optimized by
both the MSE and classification loss. As shown in Tab. XII,
the proposed affective constraint can improve the performance
by 5.5% and 2.29% compared with the simple concatenation
strategy and affective mapping. When the model utilize both
posture and movement streams, the affective constraint also
brings 2.29% and 1.38%, respectively. We focus on the
knowledge distillation, and such a constraint encourages the
representations learned in the posture stream to carry more
affective cues, so as to be more discriminative for predicting
emotions. In contrast, [39] makes a constraint on part of the
hidden features of the encoder-decoder network. When the
network converges, the constrained hidden features fed into
the classifier are nearly the same as the handcrafted affective
features (i.e., similar to the simple concatenation strategy), so
the effectiveness is limited.

• Correspondence between handcrafted features and gait
emotion recognition. Different from the general tasks e.g.
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Fig. 7: Effect of affective features in the posture stream. The
rh-r, lh-r, re-r, lr-r, rf-r, lf-r, rf-lf denote (right hand, root), (left
hand, root), (right elbow, root), (left elbow, root), (right foot,
root), (left foot, root), (left foot, right foot) respectively.

TABLE XIII: Ablation study of multiple movement features
(i.e., velocity and acceleration) for the movement stream. ‘✓’
represents the features used in the experiment.

Movement features Sub-class Accuracy (%) Accuracy (%)
Velocity Acceleration Happiness Sadness Anger Neutral

✓ - 95.24 80.49 63.64 55.56 84.40
- ✓ 95.24 65.85 24.24 38.89 74.31
✓ ✓ 96.83 73.17 75.76 66.67 86.70

✓ - 96.03 82.93 81.82 61.11 88.53
- ✓ 95.24 73.17 78.79 66.67 86.24
✓ ✓ 95.24 78.05 87.89 72.22 88.99

action recognition focuses on the posture, gait emotion is
closely related to the frequency of the gait, and the amplitude
of the limbs. Accordingly, we calculate the movement in the
parallel branch to perceive the frequency information, and
design handcrafted features in the posture branch to inject
the amplitude information into the model. Specifically, the
distance is important for emotion recognition. For instance,
when a person feels happiness, the amplitude is relatively
greater, so the distance between the hand and root is larger.
Therefore, we select 7 distances representing the amplitude of
the joints. Moreover, considering the effect of symmetric joints
such as the left hand and right hand, we compute the area to
facilitate emotion recognition. To evaluate the influence of the
7 pairs of distance features and the area features, we conduct
an ablation experiment in single posture stream and two stream
architecture. The result is shown in Fig. 7. According to the
performance in the figure, we can find the model without
area features brings the most effect, which demonstrates the
importance of the area features. For the distance features, all
seven pairs bring profit to the model, specifically for the single
stream architecture.

• Effect of Different Movement Features. We investigate
the effectiveness of the movement features (i.e., velocity and

TABLE XIV: Performance comparison of multiple feature fusion
mechanisms.

Settings Happiness Sadness Anger Neutral Accuracy (%)

1 95.24 78.05 87.89 72.22 88.99
2 97.62 78.05 75.76 66.67 88.07
3 97.62 82.93 75.76 66.67 88.99
4 97.62 85.37 78.79 61.11 89.45
5 96.83 78.05 75.76 61.11 87.16
6 96.83 90.24 69.70 61.11 88.53
7 96.83 80.49 81.82 66.67 88.99
8 96.83 82.93 81.82 77.78 90.37

1 The proposed BPM-GCN without any feature fusion mechanism.
2 PM-Interacted feature fusion without the attention mechanism.
3 PM-Interacted feature fusion mechanism with only the spatial attention
mechanism. 4 PM-Interacted feature fusion mechanism with only the
temporal attention. 5 The spatial attention and temporal attention are
integrated by summation. 6 The spatial attention and temporal attention are
integrated in a sequential way, i.e., the spatial attention is in front of the
temporal attention. 7 The spatial attention and temporal attention are
integrated in another sequential way, i.e., the spatial attention is behind the
temporal attention. 8 The proposed PM-Interacted feature fusion
mechanism in this paper.

acceleration) in our model and summarize the results in Tab.
XIII. As shown, when only velocity or acceleration feature is
employed in the movement stream, the accuracies are 84.40%
and 74.31%, respectively. For two stream case, the model only
achieves 86.24% when only acceleration is employed. It shows
that velocity carries more emotional cues than acceleration.
Intuitively, we can roughly infer a person’s emotion via the
velocity of his walking and arm swing. Nevertheless, the
acceleration cues can also contribute to this task. Acceleration
can be seen as a supplement to the velocity (indicating the
change of a person’s movement state), which is also related
to the emotion expression, and thus is auxiliary to enhancing
the emotion recognition as shown in the last row of Tab. XIII.

• Effect of Body Parts for the Movement Stream. To
explore the effects of different human body parts (e.g., hand,
head, foot, etc.) for perceiving emotions, we experiment
by masking out each part of the human body to train the
model. As shown in Fig. 6, when masking out the elbow,
foot, and hand, the performance is lowest. Particularly in
two stream model, the accuracy are 86.70%, 86.70%, and
87.61% respectively, which drop over 1% compared with the
complete method. It indicates the movement information of
these nodes is more related to emotions, i.e., the movement
of arms and feet (e.g., walking velocity and velocity of arm
swing) is important to express one’s emotions. In contrast,
the movement of the root, shoulder, and knee contributes
less to recognizing emotions, and this may be because these
parts always move similarly with the whole body and lack
independent movement.

• Ablation Analysis of the PM-Interacted Feature Fusion
mechanism. We make an ablation analysis of the proposed
PM-Interacted feature fusion mechanism in Tab. XIV. The
second row of the table is a simple fusion of the movement
stream feature and posture stream feature (e.g., for the posture
stream features, xp

i = xp
i + xm

i ). Compared with the results
in the first row, we can find such a compulsory fusion can
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Fig. 8: Visualization of four confusion matrices. (a) The base model has a single posture stream without the affective constraint. (b) We
train the proposed posture stream and movement stream separately. (c) We train the proposed posture stream and movement stream together
(BPM-GCN). (d) The proposed BPM-GCN⋇ with the PM-Interacted feature fusion mechanism.

decrease the performance of the model. It may be attributed
to the modality discrepancy between the posture feature and
movement features. The third row of the table is the PM-
Interacted feature fusion with only the spatial attention mech-
anism (e.g., for the posture features, xp

i = xp
i+xm

i ∗Natt(x
m
i )).

The fourth row of the table is the PM-Interacted feature
fusion with only the temporal attention mechanism (e.g.,
xp
i = xp

i + xm
i ∗ Tatt(x

m
i ) for the posture stream). Com-

pared with the compulsory fusion (i.e., the second row in
the table), these two attention mechanisms can both improve
the performance by focusing on discriminative features. The
fifth-seventh rows are several variants of the proposed PM-
Interacted feature fusion mechanism. The fifth row shows a
fusion mechanism, in which the spatial attention and temporal
attention are integrated by the summation operation (e.g., xp

i =
xp
i +xm

i ∗Natt(x
m
i )+xm

i ∗Tatt(x
m
i ) for the posture stream).

Compared with the third row and the fourth row, we can find
that an inappropriate combination of the spatial attention and
temporal attention mechanism can decrease the performance.
The sixth row is a sequential spatial attention and temoporal
attention mechanism, i.e., the spatial attention is in front of
the temopral attention (e.g., xp

i = xp
i + xm

i ∗ Tatt(Natt(x
m
i ))

for the posture stream). The seventh row is another kind of

sequential spatial attention and temporal attention mechanism,
i.e., the spatial attention is behind the temopral attention (e.g.,
for the posture stream, xp

i = xp
i + xm

i ∗Natt(Tatt(x
m
i ))). The

final row shows the proposed model with the PM-Interacted
feature fusion mechanism (i.e., BPM-GCN⋇). The proposed
PM-Interacted feature fusion mechanism (i.e., BPM-GCN⋇)
can improve the model without any feature fusion mechanism
(i.e., BPM-GCN) by 1.38% and can also exceed the variants
in fifth and seventh rows, which demonstrate its superiority.

D. Discussion about the Performance Improvement

To summarize, the proposed components are designed from
three aspects to improve performance. The first is where
we can find more emotional cues from gait. Different from
most recent works that only use the 3D joint coordinates
as input (posture view), we devise another movement stream
that can extract more discriminative emotion cues from the
body movement. The results in the first three rows of Tab.
VI prove that adding the movement stream improves the
performance of only using the posture stream by 4.13%
(88.07% vs. 83.94%). The second aspect is how to reduce the
gap between gait and emotion. To address this issue, we design
an affective constraint to distill the prior affective knowledge
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(a) Happiness → Happiness (b) Neutral→ Neutral

(c) Sadness→ Sadness (d) Anger→ Anger

(e) Neutral → Sadness (f) Sadness → Happiness

Fig. 9: Visualization of some samples in a sequence and their predictions by BPM-GCN⋇. The texts before and after ‘−→’ represent the
ground-truth category and the predicted one respectively. (a)-(d) are positive examples, while (e)-(f) are failure cases.

into the model and guide the model to learn the emotion-
related features better, which improves the accuracy by 1.38%
than training without the constraint (88.99% vs. 87.61%). The
third aspect is how to exchange useful knowledge between the
features from the posture stream and movement stream, and
fuse them adaptatively to further improve the discrimination
ability of the model. Thus, we propose a PM-Interacted feature
fusion mechanism that can further improve the performance
from 88.99% to 90.37%. As shown in Fig. 8, we plot the
confusion matrices of different model variants, i.e., (a) the
base model that consists of only the posture stream without
the affective constraint, (b) the proposed BPM-GCN using the
separate training mechanism, (c) the proposed BPM-GCN with
the two branches training together, and (d) the proposed BPM-
GCN⋇ with the PM-Interacted feature fusion mechanism.
From (a) to (d), the misclassification rate (shades of the color
in the off-diagonal blocks) gradually decreases, validating the
effectiveness of our proposed components, which are well
motivated and thus clearly boost the performance.

As shown in Fig. 9, we plot some gait examples in a
sequence. In most cases, e.g., (a), (b), (c), and (d), the
proposed model can accurately recognize the emotions. We
can find that the happiness samples have more animated joint
movements than others, while the neutral samples have fewer
joint movements than others. The sadness samples are usually
down in the dumps. The anger samples are frequently with
large strides and cadence. In some cases, e.g., (e) and (f),
the predicted labels for a gait do not match the ground-truth.
Most failure cases are like (e). It is reasonable that both neutral
and sadness samples are always with low arousal scales. For
(f), the sadness samples are with a relatively large stride,
thus making it confused with the happiness. Increasing more
training samples of the neutral and sadness categories may

help to discover the subtle differences and learn discriminative
features, therefore solving these failure cases.

V. CONCLUSIONS

In this paper, we address the problem of emotion recognition
of individuals based on their walking styles (gait). We present
a Bilateral Posture and Movement Graph Convolutional Net-
work (BPM-GCN) to imitate the perception of emotions from
two important views. The posture stream models emotions
from 3D coordinates of gait and leverages the prior affective
knowledge to reduce the gap between gait and emotions. The
movement stream implicitly describe the extent of emotions
by the informative velocity and acceleration pairs. We further
design a PM-Interacted feature fusion mechanism, which can
adaptatively fuse the features from the posture stream and
movement stream. Therefore, in this way, BPM-GCN can
imitate human emotion perception from both posture and
movement views and the two views can benefit each other.
Extensive experiments on the benchmark dataset demonstrate
the superiority of BPM-GCN. We hope that this idea, which
exploits posture and movement information in an end-to-
end manner, can open a new perspective for improving the
performance of gait emotion recognition. In the future, we
plan to explore more robust emotion recognition from both
gait and other modalities, e.g., face, text, speech, etc.
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G. Anbarjafari, “Survey on emotional body gesture recognition,” IEEE
Transactions on Affective Computing, vol. 12, no. 2, pp. 505–523, 2018.

[23] S. Zhao, Y. Ma, Y. Gu, J. Yang, T. Xing, P. Xu, R. Hu, H. Chai, and
K. Keutzer, “An end-to-end visual-audio attention network for emotion
recognition in user-generated videos,” in AAAI, 2020.

[24] J. P. Singh, S. Jain, S. Arora, and U. P. Singh, “Vision-based gait
recognition: A survey,” IEEE Access, vol. 6, pp. 70 497–70 527, 2018.

[25] Z. Zhang, L. Tran, F. Liu, and X. Liu, “On learning disentangled
representations for gait recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 44, no. 1, pp. 345–360, 2022.

[26] H. Chao, K. Wang, Y. He, J. Zhang, and J. Feng, “Gaitset: Cross-view
gait recognition through utilizing gait as a deep set,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3467–
3478, 2022.

[27] X. Li, Y. Makihara, C. Xu, Y. Yagi, and M. Ren, “Gait recognition
via semi-supervised disentangled representation learning to identity and
covariate features,” in CVPR, 2020.

[28] U. Bhattacharya, T. Mittal, R. Chandra, T. Randhavane, A. Bera, and
D. Manocha, “Step: Spatial temporal graph convolutional networks for
emotion perception from gaits,” in AAAI, 2020.

[29] G. Venture, H. Kadone, T. Zhang, J. Grèzes, A. Berthoz, and H. Hicheur,
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